skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kazemi, Zeinab"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We explored the feasibility of using biomechanical simulations to predict altered spinal forces resulting from wearing a back-support exoskeleton (BSE) during repetitive lifting tasks. Twenty (10M, 10F) young, healthy participants completed repetitive lifting task, while wearing a BSE (‘with EXO’) and without wearing a BSE (‘without EXO’). Spinal forces were estimated by applying the BSE torque profile to body kinematics measured in ‘with EXO’ condition, while spinal forces were simulated by applying the same torque profile to body kinematics measured in ‘without EXO’ condition. Simulated compression force was higher than estimated compression force, probably due to lower trunk flexion angle in ‘without EXO’ condition. Such differences were larger among women than among men. However, simulated shear force was comparable with estimated shear force. Future works further need to compare simulated and estimated spinal forces for different BSEs (e.g., soft BSE), asymmetric lifting tasks, and different age group. 
    more » « less